
CHET: An Optimizing Compiler for
Fully-Homomorphic Neural-Network Inferencing

Roshan Dathathri
University of Texas at Austin, USA

roshan@cs.utexas.edu

Olli Saarikivi
Microsoft Research, USA
olsaarik@microsoft.com

Hao Chen
Microsoft Research, USA
haoche@microsoft.com

Kim Laine
Microsoft Research, USA
kilai@microsoft.com

Kristin Lauter
Microsoft Research, USA
klauter@microsoft.com

Saeed Maleki
Microsoft Research, USA
saemal@microsoft.com

Madanlal Musuvathi
Microsoft Research, USA
madanm@microsoft.com

Todd Mytkowicz
Microsoft Research, USA
toddm@microsoft.com

Abstract
Fully Homomorphic Encryption (FHE) refers to a set of en-
cryption schemes that allow computations on encrypted
data without requiring a secret key. Recent cryptographic
advances have pushed FHE into the realm of practical appli-
cations. However, programming these applications remains
a huge challenge, as it requires cryptographic domain exper-
tise to ensure correctness, security, and performance.

CHET is a domain-specific optimizing compiler designed
to make the task of programming FHE applications easier.
Motivated by the need to perform neural network inference
on encrypted medical and financial data, CHET supports a
domain-specific language for specifying tensor circuits. It
automates many of the laborious and error prone tasks of
encoding such circuits homomorphically, including encryp-
tion parameter selection to guarantee security and accuracy
of the computation, determining efficient tensor layouts, and
performing scheme-specific optimizations.

Our evaluation on a collection of popular neural networks
shows that CHET generates homomorphic circuits that out-
perform expert-tuned circuits and makes it easy to switch
across different encryption schemes. We demonstrate its scal-
ability by evaluating it on a version of SqueezeNet, which to
the best of our knowledge, is the deepest neural network to
be evaluated homomorphically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314628

CCS Concepts • Software and its engineering→Com-
pilers; • Security and privacy→ Software and application
security; •Computer systems organization→Neural net-
works.

Keywords Homomorphic encryption, domain-specific com-
piler, neural networks, privacy-preserving machine learning

ACM Reference Format:
Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin
Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkow-
icz. 2019. CHET: An Optimizing Compiler for Fully-Homomorphic
Neural-Network Inferencing. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3314221.3314628

1 Introduction
Fully Homomorphic Encryption (FHE) provides an excit-
ing capability of performing computation on encrypted data
without requiring the decryption key. This holds the promise
of enabling rich privacy-preserving applications where the
clients offload their data storage and computation to a pub-
lic cloud without having to trust either the cloud software
vendor, the hardware vendor, or a third party with their key.

The first FHE scheme was proposed by Gentry et al. [22]
in 2009. While a theoretical breakthrough, a direct implemen-
tation of this scheme was considered impractical. Crypto-
graphic innovations in the past decade have since made sig-
nificant progress in both performance and supporting richer
operations. Original FHE schemes only supported Boolean
operations [22]. Subsequent schemes [7, 21] supported inte-
ger operations, thereby avoiding the need to encode arith-
metic operations as Boolean circuits. Recently, Cheon et
al. [15, 16] proposed an FHE scheme that efficiently sup-
ports fixed-point arithmetic extending the reach of FHE to
domains such as machine learning. Together with these in-
novations, optimized open-source implementations of FHE

142

https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

schemes, such as SEAL [38] and HEAAN [27], have made
FHE more accessible.
Nevertheless, building effective FHE applications today

requires direct involvement of a cryptographic expert intri-
cately familiar with the encryption schemes. Current FHE
schemes work by introducing noise during encryption that
is subsequently removed during decryption. The amount of
noise introduced during encryption and each intermediate
operation is controlled by a set of encryption parameters that
are set manually. Setting these parameters low can make the
encryption insecure. On the other hand, setting them large
can increase the size of encrypted text and increase the cost
of homomorphic operations. Moreover, when the accumu-
lated noise exceeds a bound determined by these parameters,
the encrypted result becomes corrupted and unrecoverable.

As individual homomorphic operations are orders of mag-
nitude more expensive than equivalent plaintext operations,
amortizing the cost of individual FHE operations requires uti-
lizing the vectorization capabilities (also called as “batching”
in the FHE literature) of the encryption schemes. Different
ways of mapping application parallelism onto ciphertext vec-
tors can result in different circuits each of which require a
subsequent retuning of encryption parameters for correct-
ness, security, and performance. As a result, developing FHE
applications today is laboriously hard.
In many ways, programming FHE applications today is

akin to low-level programming against a custom hardware
with counter-intuitive tradeoffs. As such, our hypothesis
is that a compiler that raises the programming abstraction
while hiding and automating many of the manual tasks can
make FHE programming easier and scalable. More impor-
tantly, by systematically exploring the various performance
tradeoffs, a compiler can generate far more efficient code
than those produced manually by experts.
This paper evaluates this hypothesis with CHET, a com-

piler for homomorphic tensor programs. The input domain is
primarily motivated by the need to perform neural-network
inference on privacy-sensitive data, such as medical images
and financial data. For privacy reasons, these applications
are performed on-premise today. Offloading the storage and
computation to a cloud provider would not only simplify the
operational cost of maintaining on-premise clusters but also
dramatically reduce the data-management cost of protecting
sensitive data from unauthorized accesses both from within
and outside the organization. Thus, FHE enables an attrac-
tive way to move these applications to the cloud without
enlarging the trust domain beyond the organization owning
the data.
Given a tensor circuit, CHET compiles the circuit into

an executable that can be linked with FHE libraries such
as SEAL [15, 38] or HEAAN [16, 27]. The compiler uses a
cost model of homomorphic operations to systematically
search over different ways of mapping input tensors into
FHE vectors. For each choice, the compiler analyzes the

resulting circuit to determine the encryption parameters
that maximize performance while ensuring security and cor-
rectness. During this process, CHET additionally performs
scheme-specific optimizations to increase the end-to-end
performance.
Apart from the compiler, CHET includes a runtime, akin

to the linear algebra libraries used in unencrypted evaluation
of neural networks. We have developed a set of layouts and a
unified metadata representation for them. For these new lay-
outs, we have developed a set of computational kernels that
implement the common operations found in convolutional
neural networks (CNNs). All of these kernels were designed
to use the vectorization capabilities of modern FHE schemes.

Schemes that support fixed-point arithmetic [15, 16] do so
by scaling fixed-point numbers to integers. Determining the
scaling factors to use for the inputs and the output is difficult
as it involves a tradeoff between performance and output
precision. CHET simplifies this choice with a profile-guided
optimization step. Given a set of test inputs, CHET auto-
matically determines the fixed-point scaling parameters that
maximize performance while guaranteeing the desired pre-
cision requirements of the output for these test inputs.
We evaluate CHET with a set of real-world CNN models

and show how different optimization choices available in our
compiler can significantly improve inference latencies. As
an example, for a neural network obtained from an industry
partner for medical imaging, the base implementation took
more than 18 hours per image, while a FHE expert was able
to bring this to under 45 minutes with a hand-tuned circuit.
By systematically searching over a wider set of possible
optimizations, CHET generated a circuit that took less than
5 minutes per image. Moreover, CHET was able to easily port
the same input circuit to a more recent and efficient FHE
scheme that is harder to hand tune. Our port took less than a
minute per image. CHET is also able to scale to large neural
networks, such as SqueezeNet. To the best of our knowledge,
this is the deepest neural network to be homomorphically
evaluated.
The rest of this paper is organized as follows. Section 2

introduces homomorphic encryption and tensor programs.
Section 3 provides an overview of using CHET with an exam-
ple. Section 4 describes the intermediate representations and
Section 5 describes our compiler. Section 6 presents our eval-
uation of CHET. Related work and conclusions are presented
in Sections 7 and 8, respectively.

2 Background
This section provides background about FHE that is nec-
essary to understand the contributions underlying CHET.
Interested readers can look at [2] for more details.

143

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

2.1 Homomorphic Encryption
Say a plaintext messagem is encrypted into a ciphertext ⟨m⟩

by an encryption scheme. This encryption scheme is said
to be homomorphic with respect to an operation ⊕ if there
exists an operation ⟨⊕⟩ such that

⟨a⟩⟨⊕⟩⟨b⟩ = ⟨a ⊕ b⟩

for all messages a andb. For example, the popular encryption
scheme RSA is homomorphic with respect to multiplication
but not with respect to addition.
An encryption scheme is fully homomorphic (FHE) if it

is homomorphic with respect to a set of operators that are
sufficient to encode arbitrary computations. Current FHE
schemes are levelled (also called as somewhat homomorphic)
in that for fixed encryption parameters they only support
computation of a particular depth.1 In this paper, we will
only deal with levelled homomorphic schemes as the size of
the input circuit is known before hand.

2.2 Integer FHE Schemes with Rescaling
Early FHE schemes only supported Boolean operations. How-
ever, recent FHE schemes directly support integer addition
and multiplication operations. This allows us to evaluate
arbitrary arithmetic circuits efficiently without having to
“explode” them into Boolean circuits. In addition, these FHE
schemes also support optimized constant operations when
one of the operand is a plaintext message.

Many applications, such as machine learning, require float-
ing point arithmetic. To support such applications using inte-
ger FHE schemes, we can use fixed-point arithmetic with an
explicit scaling factor. For instance, we can represent ⟨3.14⟩
as ⟨314⟩ with scale 100. However, this scaling factor quickly
grows with multiplication. The resulting plaintext-coefficient
growth [31] limits the size of the circuits one can practi-
cally evaluate. The recently proposed integer FHE scheme
CKKS [16] enables rescaling ciphertexts — allowing one to
convert say ⟨2000⟩ at fixed-point scale 100 to ⟨20⟩ at scale
1. This mitigates the problem of growing scaling factors.
This paper only focusses on FHE schemes with rescaling
support, namely the CKKS scheme [16] and its variant RNS-
CKKS [15]. Obviously, CHET can trivially target other FHE
schemes such as FV [21] or BGV [7], but this is not the main
focus of the paper.

Note that many applications, including machine learning,
use non-polynomial operations such as exp, log, and tanh.
We will assume that such functions are appropriately ap-
proximated by polynomials before the circuit is provided to
CHET. Prior work has already shown that this is feasible for
machine learning [23].

1A levelled scheme may be turned into a fully homomorphic one by intro-
ducing a bootstrapping operation [22].

Table 1. The asymptotic costs of homomorphic operations
for the CKKS and RNS-CKKS scheme variants in HEAAN
v1.0 and SEAL v3.1 respectively.M(Q) is the complexity of
multiplying large integers and is O(log1.58Q) for HEAAN.

Homomorphic Operation CKKS RNS-CKKS
with Q = Πri=1Qi

addition, subtraction O (N · logQ) O (N · r)
scalar multiplication O (N ·M (Q)) O (N · r)
plaintext multiplication O (N · logN ·M (Q)) O (N · r)
ciphertext multiplication O (N · logN ·M (Q)) O (N · logN · r 2)
ciphertext rotation O (N · logN ·M (Q)) O (N · logN · r 2)

2.3 Encryption Parameters
One of the essential tasks CHET performs is to automate the
selection of encryption parameters that determine the cor-
rectness, security, and performance of the FHE computation.
In both the CKKS and RNS-CKKS schemes, a ciphertext is
a polynomial of degree N with each coefficient represented
moduloQ .N is required to be a power of two in both schemes.
WhileQ is a power of two in the CKKS scheme,Q is a product
of r primes Q = Πr

i=1Qi in the RNS-CKKS scheme. Table 1
shows the asymptotic cost of homomorphic operations for
the CKKS and RNS-CKKS schemes implemented in HEAAN
v1.0 [27] and SEAL v3.1 [38] respectively. Larger values of
N and Q (or r) increase the cost of homomorphic opera-
tions. Note that although r can be much smaller than log(Q),
real world performance should not be directly inferred from
the asymptotic complexities, as implementations of the two
schemes can have very different constants. Finally, the size
of the encrypted messages grows with N .
While the performance constraints above require N and

Q to be as small as possible, they have to be reasonably large
for the following reasons. First, the parameter Q has to be
large enough to correctly evaluate a given circuit. As the
coefficients in the ciphertext polynomial are represented
modulo Q , any coefficient that exceeds Q will result in an
overflow, causing the message to be corrupted and unre-
coverable. To avoid this overflow, the computation should
periodically rescale the values as described in Section 2.2.
But this rescaling “consumes” the modulus Q resulting in
a polynomial with a smaller modulus. Thus, the computa-
tion has to perform a delicate balance between introducing
sufficient rescaling to limit the growth of coefficient values
and ensuring large-enough modulus to represent the output
correctly. As multiplications are the primary reason for the
growth of coefficients, Q directly limits the multiplicative
depth of the circuit one can safely evaluate.
Additionally, for a given Q , larger values of N make the

encryption harder to attack. The security level of an encryp-
tion is usually measured in bits, where n-bit security implies
that a brute-force attack is expected to require at least 2n
operations. The security level for a given Q and N is a table

144

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

provided by the encryption scheme [12] which CHET explic-
itly encodes. By default, CHET chooses the smallest values
of N and Q that guarantee 128-bit security.

2.4 FHE Vectorization
A unique capability of FHE schemes is the ability to support
large single instruction multiple data (SIMD) vectors. These
schemes, for appropriate setting of parameters, enable one
to encode multiple integers into a larger integer and use
the Chinese Remainder Theorem (see [31] for details) to si-
multaneously perform operations on individual integers by
performing a single operation on the larger integer. When
compared to SIMD capabilities of current hardware proces-
sors, these SIMD widths are large — vector sizes of tens of
thousands or more are not uncommon. In particular, the
SIMD width in CKKS and RNS-CKKS is N /2.

FHE schemes naturally support vector addition and multi-
plication. In addition, they support rotation operations that
mimic the shuffle instructions of the SIMD units of modern
processors. For instance, rotating a vector [a1,a2, . . . ,an]
by a constant i results in the vector [ai+1, . . . ,an,a1, . . . ,ai].
However, FHE schemes do not support random access to
extract a particular slot of a vector. Such operations need to
be implemented by multiplying the vector with a plaintext
mask followed by a rotation. This unfortunately adds to the
multiplicative depth and should be avoided when possible.
Rotating a vector by an amount i requires a public rota-

tion key that is specific to the constant i [16]. Given the
large vector widths, it is impractical to generate a rotation
key for every possible i . Instead, FHE libraries usually gen-
erate a public rotation key for every power-of-2 and then
use multiple rotations to achieve the desired amount of ro-
tation. CHET optimizes this by generating public rotation
keys explicitly for a given input circuit.

2.5 Approximation in CKKS
As discussed above, FHE schemes introduce noise during
homomorphic operations. Unlike other schemes, CKKS and
RNS-CKKS are approximate and introduce noise in the lower-
order bits of the message. To ensure that this noise does not
affect the precision of the output, these schemes require that
the inputs and the output be scaled by large-enough values.
CHET includes a profile-guided optimization to determine
these scaling factors automatically, given a set of test inputs.

2.6 Tensor Programs
A tensor is a multidimensional array with regular dimen-
sions. A tensor t has a data type dtype(t), which defines the
representation of each element, and a shape shape(t), which
is a list of the tensor’s dimensions. For example, a single 32
by 32 image with 3 channels of color values between 0 and
255 could be represented by a tensor I with dtype(I) = int8
and shape(I) = [3, 32, 32].

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟏 𝒂𝟐𝟐

𝒂𝟏𝟏 𝒂𝟏𝟐

𝒂𝟐𝟏 𝒂𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐

𝒃𝟏𝟏 𝒃𝟐𝟏 𝒃𝟏𝟏 𝒃𝟐𝟏𝒃𝟏𝟐 𝒃𝟐𝟐 𝒃𝟏𝟐 𝒃𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐

𝒃𝟐𝟏 𝒃𝟐𝟐

𝒄𝟏𝟏𝟏 𝒄𝟏𝟐𝟏 𝒄𝟐𝟏𝟏 𝒄𝟐𝟐𝟏𝒄𝟏𝟏𝟐 𝒄𝟏𝟐𝟐 𝒄𝟐𝟏𝟐 𝒄𝟐𝟐𝟐

𝒄𝟏𝟏𝟏𝒄𝟏𝟐𝟏 𝒄𝟐𝟏𝟏 𝒄𝟐𝟐𝟏 𝒄𝟏𝟏𝟐𝒄𝟏𝟐𝟐 𝒄𝟐𝟏𝟐 𝒄𝟐𝟐𝟐

𝒄𝟏𝟏 ## 𝒄𝟐𝟏 ##𝒄𝟏𝟐 ## 𝒄𝟐𝟐 ##

𝒄𝟏𝟏 𝒄𝟐𝟏𝒄𝟏𝟐 𝒄𝟐𝟐

𝑨′ = 𝑹𝒐𝒕(𝑨, 𝟏)

𝑨′′ = 𝑨 + 𝑨′

𝑩′ = 𝑹𝒐𝒕(𝑩, 𝟒)

𝑩′′ = 𝑩 + 𝑩′

𝑪′ = 𝑨′′ ⋅ 𝑩′′

𝑹𝒐𝒕(𝑪′, 𝟔)

𝑪′′ = 𝑪′ + 𝑹𝒐𝒕(𝑪′, 𝟔)

𝑪 = 𝑪′′ ⋅ 𝑴𝒂𝒔𝒌

𝑨 𝑩

Figure 1. Homomorphic matrix-matrix multiplication.

In machine learning, neural networks are commonly ex-
pressed as programs operating on tensors. Some common
tensor operations in neural networks include:

Convolution calculates a cross correlation between an
input and a filter tensor.

Matrix multiplication represents neurons that are con-
nected to all inputs, which are found in dense layers
typically at the end of a convolutional neural network.

Pooling combines adjacent elements using a reduction
operation such as maximum or average.

Element-wise operations such as batch normalization
and ReLUs.

Reshaping reinterprets the shape of a tensor, for exam-
ple, to flatten preceding a matrix multiplication.

We consider the tensor program as a circuit of tensor op-
erations and this circuit is a Directed Acyclic Graph (DAG).

3 Overview of CHET
Developing an FHE application involves many challenges.
CHET is an optimizing compiler designed to alleviate many
of the issues. This section provides the overview of the com-
piler and how it aids in the development of FHE applications.

3.1 Motivating Example
We first motivate CHET with a simple example of homomor-
phically performing matrix-matrix multiplication. Figure 1
shows two 2×2 matricesA and B. We need to perform a total
of 8 multiplications. The obvious way is to encrypt the scalar
values of A and B individually and perform matrix-matrix
multiplication the normal way. This is not a viable solution
for large matrices due to the cost of FHE operations.

145

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Encryptor
&

Decryptor

Optimized
Homomorphic
Tensor Circuit

CHET
CompilerTensor Circuit

Schema of
Image & Weights

Desired Output
Precision

Figure 2. Overview of the CHET system at compile-time.

Instead, we would like to make use of the large SIMD ca-
pabilities provided by FHE schemes. This requires us to map
the values onto vectors using specific layouts. In Figure 1, B
is in the standard row-major format, but A’s layout contains
some padding. As shown in the figure, this special layout
allows us to replicate the values twice, using rotations and
additions, such that all the 8 products we need ci jk = ai j ·bjk
can be obtained with 1 FHE multiplication in the C ′ vector.
We need additional rotation and addition operations to

compute the elements of the output matrix cik =
∑

j ci jk in
C ′′. This vector contains additional junk entries marked ##,
which are masked out to produce the result C . Note that the
layout ofC is different from that of the input matrices A and
B.

The key challenge here is that operations such as masking
and rotations which are relatively cheap in plaintext SIMD
operations are expensive in FHE. For instance, rotatingC ′ by
6 would either require a special rotation key for 6 or we have
to use two rotations using the power-of-2 keys for 4 and 2
generated by default by the underlying encryption schemes.
Equally importantly, masking operations such as the one
required to obtain C from C ′′ involve a multiplication that
adds to the multiplicative depth.

Thus, when matrix C is used in a subsequent matrix mul-
tiplication, rather than converting it into a standard layout
of A or B, we can emit a different set of instructions that are
specific to the layout of C . Doing this manually while man-
aging the different layouts of the variables in the program
can soon become overwhelming and error prone.

While the simple example above already brought out the
complexity of FHE programming, performing neural net-
work inferencing brings out many more. First, we have to
deal with multi-dimensional tensors where the choices of
layouts are numerous. Moreover, useful machine learning
models have large tensors that need not fit within the SIMD
widths of the underlying schemes when using standard pa-
rameters. Thus, one has to deal with the trade-off between
increasing the SIMD widths (by increasing the N parameter)
or splitting tensors into multiple ciphertexts.
As we have seen above, layout decisions can change the

operations one needs to perform which can in turn affect the
multiplicative depth required to execute the circuit. However,

setting the encryption parameters to allow the required mul-
tiplicative depth in turn changes the SIMD widths available
which of course might require changes in the layout. Making
these interdependent choices manually is a hard problem.
CHET is designed to automatically explore these choices.

3.2 Using the Compiler
We will assume that the neural network inferencing compu-
tation is specified as a sequence of tensor operations that we
call a tensor circuit. This input is very similar to how these
models are specified in frameworks such as TensorFlow [1].
Figure 2 shows how an application programmer can use

CHET to compile a tensor circuit. Consider a tensor circuit
with a single operation:

output = conv2d(imaдe,weiдhts); (1)

In addition to the tensor circuit, CHET requires the schema
of the inputs to the circuit. The input schema specifies the
tensor dimensions as well as the fixed-point scales to use
for the tensor values. In Equation 1 for example, the user
specifies that the input “image” (i) is encrypted, (ii) is a 4-
dimensional tensor of size 1 × 1 × 28 × 28, and (iii) has a
fixed-point scaling factor of 240. CHET also requires the
desired fixed-point scales for the output (output precision).

Neural network models typically use floating-point values
and determining the right fixed-point scaling factors to use
is not straight-forward, especially given the approximation
present in CKKS. Larger scaling factors might lead to higher
cost of encrypted computation while smaller scaling factors
might lead to loss in prediction accuracy. To aid in tuning the
scaling factors, CHET provides an optional profile-guided
optimization. Instead of specifying the scaling factors to use,
the user provides a set of representative (training) images.
CHET uses these to automatically determine appropriate
fixed-point scales for the images, the weights, and the output.
For a target FHE scheme using the given constraints,

CHET generates an equivalent, optimized homomorphic ten-
sor circuit as well as an encryptor and decryptor. Both of
these executables encode the choices made by the compiler
to make the homomorphic computation efficient. For Equa-
tion 1, the homomorphic tensor circuit generated is:

encOutput = hconv2d(encImaдe,weiдhts,HW); (2)

There are several data layout options for the encrypted out-
put of each operation and CHET chooses the best one; in
this case, it chooses HW layout (described in Section 4.2).
Similarly, the encryptor and decryptor use the encryption
parameters decided by CHET. CHET also chooses the con-
figuration of public keys that the encryptor should generate.

To evaluate the tensor circuit on an image, the client first
generates a private key and encrypts the image using the
encryptor generated by CHET, as shown in Figure 3. The
encrypted image is then sent to the server along with un-
encrypted weights and public keys required for evaluating

146

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

Encryptor
&

Decryptor

Image Encrypted
Image

Encryptor
&

Decryptor

Encrypted
Prediction Prediction

Client Client
Optimized

Homomorphic
Tensor Circuit

CHET Runtime

FHE Scheme

Encrypted
Image

Encrypted
Prediction

Server

WeightsWeights

Private Key Public Keys Public Keys Private Key

Figure 3. Overview of the CHET system at runtime (shaded boxes are programs generated by the CHET compiler).

homomorphic operations (i.e., multiplication and rotation).
The server executes the optimized homomorphic tensor cir-
cuit generated by CHET. The homomorphic tensor opera-
tions in the circuit are executed using the CHET runtime,
which uses the underlying target FHE scheme to execute
homomorphic computations on encrypted data. The circuit
produces an encrypted prediction, which it then sends to the
client. The client decrypts the encrypted prediction with its
private keys using the CHET generated decryptor. In this
way, the client runs tensor programs like neural networks
on the server without the server being privy to the data, the
output (prediction), or any intermediate state.

In this paper, we assume a semi-honest threat model (like
CryptoNets [23]) where the server and the compiler are semi-
honest, i.e., the server and the compiler execute the requested
computation faithfully but would be curious about the client
or user data. The client or user data is private and its confi-
dentiality must be guaranteed. As FHE is non-deterministic
and immune to side-channel attacks, encrypting the user
data or image using CHET is sufficient to ensure this. Note
that CHET only knows the dimensions of the image and
weights while the server only knows the image dimensions
and the weights used in the model. CHET can be thus used by
the client to offload both storage (encrypted data) and compu-
tation (neural network inference) to public cloud providers.
While Figure 3 presents the flow in CHET for homo-

morphically evaluating a tensor circuit on a single image,
CHET supports evaluating the circuit on multiple images si-
multaneously, which is known as batching in image inference.
However, unlike in neural network training, for inference
tasks, it is not always true that a large batch-size is avail-
able. For example, in a medical imaging cloud service, where
each patient’s data is encrypted under their personal key, the
batch is limited to the images from a single patient. While
batching increases the throughput of image inference [23],
CHET’s focus is decreasing image inference latency. In the
rest of this paper, we consider a batch size of 1, although
CHET trivially supports larger batch sizes.

3.3 Design of the Compiler
A key design principle of CHET is the separation of concerns
between the policies of choosing the secure, accurate, and most
efficient homomorphic operation and themechanisms of execut-
ing those policies. The policies include encryption parameters

that determine that the computation is secure and accurate,
and layout policies that map tensors onto vectors that are
crucial for performance. Like Intel MKL libraries that have
different implementations of linear algebra operations, the
CHET runtime contains different implementations for tensor
operations that cater to different input and output layouts.
The CHET compiler is responsible for searching over the
space of valid and efficient policies.

CHET introduces two abstractions that simplify its design
and implementation. Homomorphic Tensor Circuit (HTC) is a
tensor circuit annotated with the metadata that encodes all
the policy decisions for every tensor variable. For instance
in Figure 1, the HTC precisely specifies how the matrices A
and B are mapped onto vectors and the desired layout for
the output C . The HTC specification, including data layouts,
is described in Section 4.2.
The CHET runtime implements the mechanisms neces-

sary to support the policies in HTC. To design the runtime
independent of the underlying FHE scheme, we introduce
an abstraction called Homomorphic Instruction Set Archi-
tecture (HISA), in Section 4.1.
For each FHE scheme, the domain expert specifies the

cost model of each HISA primitive in it (the models could
be derived through theoretical or experimental analysis).
These models use only local information (arguments of the
HISA primitive) and are independent of the rest of the circuit.
CHET uses these specifications to globally analyze the tensor
circuit and choose the encryption parameters, the public
keys configuration, and the data layouts. We describe these
in detail in Section 5.

4 Intermediate Representations
CHET uses two intermediate representations: Homomorphic
Instruction Set Architecture (HISA) and Homomorphic Ten-
sor Circuit (HTC). HISA is a low-level intermediate represen-
tation, that acts as an interface between the CHET runtime
and the underlying FHE scheme, whereas HTC is a high-
level intermediate representation that acts as an interface
between the CHET compiler and the CHET runtime. HISA
and HTC are closely related to the operations in the target
FHE library and the input tensor circuit, respectively.

147

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 2. Primitives of the HISA.

Instruction Semantics Signature

encrypt(p) Encrypt plaintext p into a ciphertext. pt → ct
decrypt(c) Decrypt ciphertext c into a plaintext. ct → pt
copy(c) Make a copy of ciphertext c . ct → ct
free(h) Free any resources associated with handle h. ct ∪ pt → void
encode(m, f) Encode vector of realsm into a plaintext with a scaling factor f . Rs , Z→ pt
decode(p) Decode plaintext p into a vector of integers. pt → Rs

rotLeft(c , x), rotLeftAssign(c , x) Rotate ciphertext c left x slots. ct, Z→ ct
rotRight(c , x), rotRightAssign(c , x) Rotate ciphertext c right x slots. ct, Z→ ct

add(c , c′), addAssign(c , c′)
Add ciphertext, plaintext, or scalar to ciphertext c .

ct, ct → ct
addPlain(c , p), addPlainAssign(c , p) ct, pt → ct
addScalar(c , x), addScalarAssign(c , x) ct, R→ ct

sub(c , c′), subAssign(c , c′)
Subtract ciphertext, plaintext, or scalar from ciphertext c .

ct, ct → ct
subPlain(c , p), subPlainAssign(c , p) ct, pt → ct
subScalar(c , x), subScalarAssign(c , x) ct, R→ ct

mul(c , c′),mulAssign(c , c′)
Multiply ciphertext, plaintext, or scalar (at scale f) to ciphertext c .

ct, ct → ct
mulPlain(c , p),mulPlainAssign(c , p) ct, pt → ct
mulScalar(c , x , f),mulScalarAssign(c , x , f) ct, R, Z→ ct

rescale(c , x), rescaleAssign(c , x) Rescale ciphertext c by scalar x . Undefined unless ∃ub : x = maxRescale(c , ub). ct, Z→ ct
maxRescale(c , ub) Returns the largest d ≤ ub that c can be rescaled by. ct, Z→ Z

4.1 Homomorphic Instruction Set Architecture
(HISA)

The goal of HISA is to abstract the details of FHE encryption
schemes, such as the use of encryption keys and modulus
management. This abstraction enables CHET to target new
encryption schemes.
Table 2 presents instructions or primitives in the HISA.

Each FHE library implementing the HISA provides two types:
pt for plaintexts and ct for ciphertexts. During initialization,
FHE library generates private keys required for encryption
and decryption, and public keys required for evaluation. The
appropriate use of these keys is the responsibility of the FHE
library and is not exposed in HISA.
HISA supports point-wise fixed-point arithmetic opera-

tions and rotations. The number of slots in the FHE vector,
s is a configurable parameter that is provided to the FHE
library during the initialization. For schemes that do not
support batching, this parameter can be set to 1. For such
schemes, rotation operations are no-ops.
The rescale and maxRescale instructions abstract the re-

scaling operations provided by the CKKS [16] and the RNS-
CKKS [15] schemes. These schemes have restrictions on the
scalar value by which a ciphertext can be rescaled. For the
CKKS scheme, the scalar has to be a power of 2. For the
RNS-CKKS scheme, it has to be the next modulus in the
modulus chain. The maxRescale(c, ub) abstracts this detail
and returns the maximum value less than or equal to the
desired ub that the input ciphertext c can be rescaled by. This
instruction additionally guarantees that the return value is

less than the modulus of c . For schemes that do not support
rescaling, maxRescale always returns 1.

4.2 Homomorphic Tensor Circuit (HTC)
The goal of HTC is to provide a high-level abstraction of ten-
sor operations and map them to low-level HISA primitives
described above. This abstraction enables CHET to choose
the most efficient layouts for input and intermediate ten-
sors in the tensor circuit, and call the appropriate optimized
runtime functions that implement tensor operations.
HTC provides an encrypted tensor datatype called Ci-

pherTensor. It contains metadata about the logical layout
of the unencrypted tensor, such as its dimensions, padding
information, and strides. The metadata is stored as plain
integers as it does not leak any information about the data.
Since HISA only supports (1-dimensional) vectors, Ci-

pherTensor is responsible for mapping the tensor into its
physical layout as a vector of ciphertexts, with each cipher-
text encrypting a vector. This problem is similar to tiling or
blocking of vectors to improve locality of high-performance
kernels, but with different constraints. For example, consider
a four-dimensional tensor commonly used in image recog-
nition with batch (outermost) N , channel C , height H , and
(innermost) widthW dimensions. Figure 4 shows one way of
mapping such a tensorA by representing each H ×W matrix
as a ciphertext in row-major format (with no padding and
stride 1), and having N ×C such ciphertexts in a vector. We
call this the HW layout. One can also envision blocking the
channel dimension too, where each ciphertext represents a
C ×H ×W tensor. We call this the CHW layout. We also sup-
port dividing the C dimension across multiple ciphertexts,

148

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

𝒇𝟏𝟏 𝒇𝟏𝟐

𝒇𝟐𝟏 𝒇𝟐𝟐

𝒇𝟏𝟏 𝒇𝟏𝟐

𝒇𝟐𝟏 𝒇𝟐𝟐

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑

𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑

𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑

𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑

𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑 𝒂𝟏𝟏

𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑

𝒂𝟐𝟐 𝒂𝟐𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟐𝟏

𝒃𝟏𝟏 𝒃𝟏𝟐 ## 𝒃𝟐𝟏 𝒃𝟐𝟐 ## ## ## ## ## ## ## ##

𝑭

𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑

𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑

𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑

𝒇𝟏𝟏 𝒇𝟏𝟐

𝒇𝟐𝟏 𝒇𝟐𝟐

𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟐𝟏 𝒃𝟐𝟐

𝑨′ = 𝑹𝒐𝒕(𝑨, −𝟏)

𝑨′′ = 𝑹𝒐𝒕(𝑨,−𝟑)

𝑨′′′ = 𝑹𝒐𝒕(𝑨, −𝟒)

𝑩′ = 𝑨 ⋅ 𝒇𝟏𝟏 + 𝑨′ ⋅ 𝒇𝟏𝟐 + 𝑨′′ ⋅ 𝒇𝟐𝟏 + 𝑨′′′ ⋅ 𝒇𝟐𝟐

𝑩 = 𝑩′ ⋅ 𝑴𝒂𝒔𝒌

𝑨

H

W

N×C

𝒃𝒊,𝒋 =෍

𝒙,𝒚

𝒂𝒊+𝒙,𝒋+𝒚 ⋅ 𝒇𝒙,𝒚

Figure 4. Homomorphic convolution of one channel in HW
layout with a 2x2 filter (with valid padding).

in which case each ciphertexts represents a c ×H ×W tensor
for some c < C .
The metadata describing the physical layout of a Cipher-

Tensor also includes information about the strides for each
dimension. For example, for an image of height (row) and
width (column) of 28, a stride of 1 for the width dimension
and a stride of 30 for the height dimension allows a padding
of 2 (zero or invalid) elements between the rows.
It is not clear which layout is the most efficient way to

represent a tensor. As hinted in Section 3, the physical layout
of the tensors determines the instructions CHET needs to
implement tensor operations. For instance, Figure 4 shows
the convolution operation when the input image A and the
filter F are in HW format. Convolution requires an element-
wise multiplication of the image and the filter followed by an
addition of neighboring elements. This can be implemented
by rotating the image by appropriate amounts and multiply-
ing each ciphertext with an element from the filter. When
the values of the filter are unencrypted (which is the case
when applying a known model to an encrypted image), this
can be performed efficiently with a mulScalar.
Notice that the ciphertexts in Figure 4 have some empty

space, which in many cases can be filled by using the CHW
layout. However, in this case mulPlain needs to be used in-
stead of mulScalar because different weights need to be mul-
tiplied to different 2-d HW images in the same ciphertext. As
shown in Table 1, in RNS-CKKS, bothmulPlain andmulScalar
have O(N · r) complexity, whereas in CKKS, mulPlain and
mulScalar have O(N · logN ·M(Q)) and O(N ·M(Q)) com-
plexities, respectively. Therefore, for CKKS, homomorphic
convolution in CHW layout is slower than that in HW layout,
whereas for RNS-CKKS, CHW layout may be faster.

By abstracting the physical layout, HTC enables CHET to
determine efficient layouts based on a global analysis of the
entire circuit (described in Section 5). Moreover, by trans-
lating reshaping and padding operations in the circuit into
operations that change the metadata, CHET avoids or delays

performing these expensive operations only when necessary.
HTC also enables us to incrementally support new tensor
layouts. The current implementation of CHET only supports
two layouts for each tensor: HW and CHW. We hope to
extend CHET to support additional layouts in the future.

5 Compiling a Tensor Circuit
This section describes the CHET compiler. We first describe a
global data-flow analysis and transformation framework (Sec-
tion 5.1), which is instantiated for three different analyses
to a) determine the encryption parameters (Section 5.2), b)
choose an efficient layout for tensors (Section 5.3), and c)
generate rotation keys necessary to evaluate the input cir-
cuit (Section 5.4). We then describe a profile-guided opti-
mization to choose the fixed-point scales for the inputs and
output (Section 5.5).

5.1 Analysis and Transformation Framework
The input tensor circuit is first translated to an equivalent
Homomorphic Tensor Circuit (HTC) as follows: (i) any tensor
marked as encrypted in the input schema is considered to
be of type CipherTensor, and (ii) any tensor operation with
at least one input CipherTensor is mapped to an equivalent
homomorphic tensor operation that produces aCipherTensor
as output. CHET then analyses and transforms the HTC.
Analyzing the HTC involves performing a sequence of

data flow analyses on the HTC. Each such analysis requires
an FHE expert to specify the data-flow equation for each
HISA primitive. We call the set of these equations the HISA-
Analyser. Each equation reads the data-flow information of
its inputs and writes the data-flow information of its output,
and is agnostic of the rest of the circuit.
The obvious way to run the data-flow analysis is to ex-

plicitly build the data-flow graph of HISA primitives from
the HTC. In contrast to most traditional optimizing com-
pilers, the HTC has two key properties: its data-flow graph
is a Directed Acyclic Graph (DAG) and the dimensions of
tensors in the graph are known at compile-time from the
schema provided by the user (similar to High Performance
Fortran compilers). CHET exploits this to elide building such
a data-flow graph in memory.
Instead, CHET performs the analysis by dynamically un-

rolling the graph on-the-fly. This is done by executing the
HTC and the CHET runtime using a different interpreta-
tion. In our implementation, we customize the ct datatype
in HISA primitives using templates to store data-flow in-
formation and overload operations to execute the data-flow
equations rather than call into the underlying FHE library.
Thus, executing the framework in this new interpretation
automatically composes the data-flow equations to perform
the analysis. Once a HISA-Analyser has finished, a subse-
quent transformer uses the data-flow information computed
to transform the circuit appropriately.

149

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

To summarize, a compiler transformation pass in CHET for
a particular FHE scheme can be defined by the following:
(1) ct datatype to store the data-flow information along with
its initialization, (2) data-flow equation for each HISA prim-
itive (HISA-Analyser), and (3) a transformer that takes the
data-flow analysis results and returns a specification for the
HTC. The framework handles the rest. The analysis and
transformation framework can thus be used to easily add
new transformations and new target FHE schemes.

5.2 Encryption Parameters Selection
The goal of this analysis is to determine the encryption pa-
rameters to use when evaluating a given circuit. These pa-
rameters are also used in the Encryptor and Decryptor to
encrypt the inputs and decrypt the results respectfully. As
described in Section 2.3, parameters N and Q determine the
performance, security, and correctness of an FHE computa-
tion in the CKKS and RNS-CKKS schemes.
For a given Q , the minimum value of N that guarantees

that security level against currently known attacks is a deter-
ministic map, as listed in [12] (Section 5.4). We pre-populate
this in a table and choose 128-bit security (this is a config-
urable hyper-parameter). The data-flow analysis in this com-
piler pass is thus to aid in determining only the coefficient
modulus, Q .
As described in Section 2.3, maximizing performance re-

quires us to find a tight lower-bound forQ that is sufficiently
large to evaluate the input circuit correctly and to the de-
sired precision. In both CKKS and RNS-CKKS, the coefficient
modulus changes during execution of the rescale instruc-
tion: rescale takes the ciphertext message c with modulusm
and an integer x , and produces a ciphertext c ′ with modulus
m′ =m/x ; in effect, the modulus is “consumed” in the rescale
operation. If the new modulus is below 1, then the resulting
ciphertext is invalid. Hence, tracking the modulus consumed
using data-flow analysis can find the minimum required Q .
The challenge in tracking the modulus consumed is that

both CKKS and RNS-CKKS restrict the divisors that can be
used in the rescale instruction (the maxRescale instruction
can be used to query a suitable divisor for a given bound).
To analyze their behavior at runtime, we use the analysis
framework to execute the instructions using a different in-
terpretation. This interpretation tracks how the modulus
changes with rescale (Section 2.3) and which divisors are
valid, as returned from maxRescale. Using this, the encryp-
tion parameters selection pass for CKKS is defined by:

Datatype ct stores the modulus “consumed” and is ini-
tialized to 1.

HISA-Analyser ThemaxRescale instruction returns the
same value that it would have returned if it was exe-
cuted in CKKS. The rescale instruction multiplies the
divisor with the input’s ct, and stores it to the output’s
ct, thereby tracking the modulus consumed during

computation. In all other instructions, if the output is
a ct, then it is the same as the inputs’ ct (which are
required to all be the same).

Transformer The circuit output’s ct captures the mod-
ulus “consumed” during the entire circuit. The user-
provided desired output fixed-point scaling factor (pre-
cision) is multiplied by the circuit output’s ct to get Q .
Finally, N is chosen using the pre-populated table.

For the RNS-CKKS scheme, the analysis assumes there is a
global listQ1,Q2, . . . ,Qn of pre-generated candidate moduli2
for a sufficiently largen. The goal of the analysis is to pick the
smallest r such that Q = Πr

i=1Qi can be used as the modulus
for the input circuit.

Datatype ct stores the index k in the list of moduli to
be “consumed” next and is initialized to 1.

HISA-Analyser For the maxRescale(c,ub) and rescale
instructions, the analyser determines the largest j ≥ k

such that Πj
i=kQi ≤ ub. If such a j exists, maxRescale

returns Πj
i=kQi and rescale stores the index j +1 to the

output’s ct. If no such j exists, rescale stores the index
k and maxRescale returns 1. In all other instructions,
if the output is a ct, then it is the same as the inputs’
ct (which are required to all be the same).

Transformer The circuit output’s ct captures the num-
ber of moduli “consumed” during the entire circuit.
The length of the modulus chain is then chosen as
the smallest r such that Πr

i=ctQi is greater than the
user-provided desired output fixed-point scaling fac-
tor (precision) multiplied by the circuit output’s ct. Q
is set to Πr

i=1Qi . Finally, N is chosen using the pre-
populated table.

5.3 Data Layout Selection
The goal of the data layout selection pass is to determine
the data layout of the output of each homomorphic tensor
operation in the HTC so that the execution time of the HTC
is minimized. We first need to search the space of data layout
choices. For each such choice, we then need to analyze the
cost of the HTC corresponding to that choice. To do this, we
need an estimation of the cost of each HISA primitive. We
describe each of these three components in detail next.
The cost of HISA primitives could be estimated using

theoretical analysis (through asymptotic complexity) or ex-
perimental analysis (through microbenchmarking). Table 1
lists the asymptotic complexity of different HISA primitives
in CKKS and RNS-CKKS. Different HISA primitives have
different costs, even within the same FHE scheme. In this
paper, we use a combination of theoretical and experimental
analysis, by using asymptotic complexity and tuning the
constants involved using microbenchmarking of CKKS and

2By default, CHET uses a list of 60-bit primes distributed in SEAL.

150

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

RNS-CKKS instructions, to derive a cost model for HISA
primitives (agnostic of the tensor circuit and inputs).

Given a cost model for HISA primitives, data-flow analysis
is used to estimate the cost of executing a HTCwith a specific
data layout choice. We define the cost estimation pass for
both CKKS and RNS-CKKS as follows:

Datatype ct stores the cost and is initialized to 0.
HISA-Analyser For each HISA primitive, if the output

is a ciphertext, then its ct is the sum of the ct of the
inputs and the cost of that primitive, according to the
cost model specific to CKKS and RNS-CKKS.

Transformer The circuit output’s ct captures the cost of
the entire HTC. If the cost is smaller than theminimum
observed so far, then the minimum cost is updated and
the best data layout choice is set to the current one.

Note that as we execute HISA instructions using this new
interpretation, we use parallel threads during analysis to
estimate the cost on each thread and take the maximum
across threads as the cost of the HTC.
The runtime exposes the data layout choices for the out-

puts of homomorphic tensor operations. In our current run-
time (more details can be found in [19]), there are only 2
such choices per tensor operation, HW and CHW layouts
(Section 4.2). The search-space for the HTC is exponential in
the number of tensor operations, so it is huge. An auto-tuner
might be useful to explore this search space. We instead use
domain-specific heuristics to prune this search space: (i) ho-
momorphic convolutions are typically faster if the input and
output are in HW, while all the other homomorphic tensor
operations are typically faster if the input and output are in
CHW, and (ii) homomorphic matrix multiplications (fully
connected layers) are typically faster when the output is in
CHW, even if the input is in HW, while all other homomor-
phic tensor operations are typically faster if both input and
output are in the same layout. Using these heuristics, we
consider only 4 data layout choices for the HTC: (i) HW:
all homomorphic tensor operations use HW, (ii) CHW: all
homomorphic tensor operations use CHW, (iii) HW-conv,
CHW-rest: homomorphic convolution uses HW, while all
other homomorphic tensor operations use CHW, and (iv)
CHW-fc, HW-before: all homomorphic tensor operations till
the first homomorphic fully connected layer use HW and
everything thereafter uses CHW. We thus restrict the search
space to a constant size. Each data layout choice corresponds
to a HTC. For each choice, we select the encryption param-
eters and analyze the cost (two passes). We then pick the
minimum cost one.

5.4 Rotation Keys Selection
The goal of the rotation keys selection pass is to determine
the public evaluation keys for rotation that needs to be gen-
erated by the encryptor and decryptor. In both CKKS and

RNS-CKKS, to rotate a ciphertext by x slots, a public evalua-
tion key for rotating by x is needed. Recall that the vector
width used for FHE vectorization is N /2. Since the range of
possible rotations of this vector, i.e., N /2, is huge and each
rotation key consumes significant memory, it is not feasible
to generate rotation keys for each possible rotation. There-
fore, both CKKS and RNS-CKKS, by default, insert public
evaluation keys for power-of-2 left and right rotations, and
all rotations are performed using a combination of power-
of-2 rotations. As a consequence, any rotation that is not a
power-of-2 would perform worse because it has to rotate
multiple times. Nevertheless, only 2loд(N) − 2 rotation keys
are stored by default. This is too conservative. In a given ho-
momorphic tensor circuit, the distinct slots to rotate would
not be in the order of N . We use data-flow analysis to track
the distinct slots of rotations used in the HTC.

We define the rotation keys selection pass for both CKKS
and RNS-CKKS as follows:

Datatype ct stores the set of rotation slots used and is
initialized to ∅.

HISA-Analyser Any rotate HISA instruction inserts the
slots to rotate to the input’s ct, and stores it to the
output’s ct. In all other instructions, if the output is a
ciphertext, then its ct is the union of the inputs’ ct.

Transformer The circuit output’s ct captures all the
rotation slots used in the HTC. Rotation keys for these
slots are marked for generation.

5.5 Fixed-Point Scaling Factor Selection
The inputs to the compiler passes discussed so far include
the fixed-point scales of the inputs (images and weights) in
HTC as well as the desired fixed-point scale (or precision) of
the output. It is not straightforward for the user to determine
the scaling factors to use for the floating-point values. More-
over, these factors interact with the approximation noise
introduced by the FHE scheme, so the fixed-point scales
must be large enough to ensure that the noise added does
not reduce accuracy too much. To alleviate this, CHET in-
cludes an optional profile-guided optimization that finds
appropriate scaling factors. Instead of fixed-point scales, the
user provides unencrypted inputs along with a tolerance (or
error-bound) for the output.
Floating-point numbers are encoded as fixed-point num-

bers by multiplying them by their specified fixed-point scale
(inputs are scaled before encryption if applicable). Recall
that multiplication of two such fixed-pointed numbers re-
sults in a number at a larger fixed-point scale, that may be
rescaled back down if a suitable divisor exists (as provided
by maxRescale). The magnitude of the divisors (for CKKS)
or when divisors become available (for RNS-CKKS) is de-
termined by the fixed-point scales of the operands. Thus,
the selection of scaling factors directly impacts rescale and
consequently, encryption parameters selection.

151

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 3. Deep Neural Networks used in our evaluation.

Network No. of layers # FP Accuracy (%)Conv FC Act operations

LeNet-5-small 2 2 4 159960 98.5
LeNet-5-medium 2 2 4 5791168 99.0
LeNet-5-large 2 2 4 21385674 99.3
Industrial 5 2 6 - -
SqueezeNet-CIFAR 10 0 9 37759754 81.5

Larger scaling factors yield larger encryption parameters
andworse performance, whereas smaller scaling factors yield
smaller encryption parameters and better performance but
the output might vary beyond the tolerance, leading to pre-
diction inaccuracy. The compiler minimizes the scaling fac-
tors while ensuring that the output values are within toler-
ance for the given inputs.
Given a set of scaling factors, we use CHET to generate

the optimized HTC. For each input, we encrypt it using
parameters chosen by CHET, run the HTC, and decrypt the
output. We compare this with the output of the unencrypted
tensor circuit. If the difference is beyond tolerance for any of
the output values for any input, then we reject these scaling
factors. Otherwise, the scaling factors are acceptable.
For neural network inference, CHET allows specifying 4

fixed-point scaling factors - one for the image, one for masks,
and two for the weights depending on whether they are
used as scalars or plaintext (vectors)3. If there are x choices
for selecting the scaling factors for each, then there are x4
choices in total. To limit the search space to 4 · x , we used a
round-robin strategy: each scaling factor starts from 240 and
we decrease the exponents by one as long as the accuracy is
acceptable. The search continues until a minimum is reached.

6 Evaluation
We evaluate the CHET compiler with two target FHE li-
braries: HEAANv1.0 [27] and SEAL v3.1 [38], that implement
the FHE schemes, CKKS [16] and RNS-CKKS [15], respec-
tively. Our evaluation targets a set of convolutional neural
network (CNN) architectures for image classification tasks
that are summarized in Table 3.

LeNet-5-like is a series of networks for the MNIST [33]
dataset.We use three versions with different number of
neurons: LeNet-5-small, LeNet-5-medium, and LeNet-
5-large. The largest one matches the one used in the
TensorFlow’s tutorials [39]. These networks have two
convolutional layers, each followed by ReLU activation
and max pooling, and two fully connected layers with
a ReLU in between.

Industrial is a pre-trained HE-compatible neural net-
work from an industry partner for privacy-sensitive

3Separate scaling factors are used because approximation noise of encoding
in CKKS is smaller when all the elements in a plaintext are equal.

Table 4. Encryption parameters N and Q selected by CHET-
HEAAN and the user-provided fixed-point parameters.

Network N log(Q) log(Pc , Pw , Pu, Pm)

LeNet-5-small 8192 240 30 16 15 8
LeNet-5-medium 8192 240 30 16 15 8
LeNet-5-large 16384 400 40 20 20 10
Industrial 32768 705 35 25 20 10
SqueezeNet-CIFAR 32768 940 30 20 20 10

binary classification of images. We are unable to reveal
the details of the network other than the fact that it has
5 convolutional layers and 2 fully connected layers.

SqueezeNet-CIFAR is a neural network for the CIFAR-
10 dataset [30] that follows the SqueezeNet [26] ar-
chitecture. This version has 4 Fire-modules [18] for
a total of 10 convolutional layers. To the best of our
knowledge, SqueezeNet-CIFAR is the deepest NN that
has been homomorphically evaluated.

All networks other than Industrial use ReLUs and max-
pooling, which are not compatible with homomorphic eval-
uation (HE). For these networks, we modified the activation
functions to a second-degree polynomial [11, 23]. The key
difference with prior work is that our activation functions
are f (x) = ax2 + bx with learnable parameters a and b. Dur-
ing the training phase, the CNN adjusts these parameters
to implement an appropriate activation function. We also
replaced max-pooling with average-pooling.
Table 3 lists the accuracies for the HE-compatible net-

works. For LeNet-5-large, the 99.3% accuracy matches that
of the unmodified network. For SqueezeNet-CIFAR, the re-
sulting accuracy of 81.5% is close to that of the non-HE-
compatible network, which achieves an accuracy of 84%.
Note that encryption was not used during training. The
learned weights are used for inference with an encrypted
image.
To provide a fair comparison with a set of hand-written

HEAAN baselines that used non-standard encryption pa-
rameters, experiments with CHET-HEAAN were run with
matching parameters that offer somewhat less than 128-bit
security. Experiments with CHET-SEAL use the default 128-
bit security level.

All experiments were run on a dual socket Intel Xeon E5-
2667v3@3.2GHz with 224 GB of memory. Hyperthreading
was turned off for a total of 16 hardware threads. We present
the average latency of image inference with a batch size of
1. All latencies are reported as averages over 20 different
images.

Comparison with hand-written: For a fair comparison,
we consider hand-written implementations using HEAAN
for a subset of the networks. The RNS-CKKS scheme in
SEAL is difficult to manually hand tune, and thus we do
not compare with hand-written version for SEAL. Experts

152

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

4

32

256

2048

LeNet-5-small

LeNet-5-medium

LeNet-5-large

Industrial

SqueezeNet-CIFAR

Network

Av
er

ag
e

la
te

nc
y

(s
ec

)

CHET-SEAL CHET-HEAAN Manual-HEAAN

Figure 5. Average latency (log scale) of CHET-SEAL, CHET-
HEAAN, and hand-written HEAAN versions.

Table 5. Average latency (sec) with different data layouts
using CHET-SEAL.

Network HW CHW HW-conv CHW-fc
CHW-rest HW-before

LeNet-5-small 2.5 3.8 3.8 2.5
LeNet-5-medium 22.1 10.8 25.8 18.1
LeNet-5-large 64.8 35.2 64.6 61.2
Industrial 108.4 56.4 181.1 136.3
SqueezeNet-CIFAR 429.3 164.7 517.0 441.0

Table 6. Average latency (sec) with different data layouts
using CHET-HEAAN.

Network HW CHW HW-conv CHW-fc
CHW-rest HW-before

LeNet-5-small 8 12 8 8
LeNet-5-medium 82 91 52 51
LeNet-5-large 325 423 270 265
Industrial 330 312 379 381
SqueezeNet-CIFAR 1342 1620 1550 1342

took weeks of programming effort to optimize each network
independently. They reduced the latency of LeNet-5-small
and LeNet-5-medium to 14 and 140 seconds, respectively. For
Industrial, the default implementation by a developer took
more than 18 hours per image, which the experts were able
to tune to less than 45 minutes after months of work.

Figure 5 compares the hand-written implementations with
CHET generated optimized ones for HEAAN and SEAL. For
context, CHET-SEAL is around two orders of magnitude
slower than CHET’s unencrypted reference inference en-
gine. CHET clearly outperforms hand-written implementa-
tions, even when using HEAAN. The hand-written imple-
mentations are slower because it is tedious and error prone

16

64

256

1024

64 512 4096
Estimated Cost

Av
er

ag
e

la
te

nc
y

(s
ec

)

Figure 6. Estimated cost vs. observed average latency (log-
log scale) for different layouts and networks in CHET.

to explore different data layouts. CHET not only explores
layouts but also chooses the best one automatically. Fur-
thermore, CHET-SEAL is an order of magnitude faster than
hand-written implementations, while the complications of
the RNS-CKKS scheme are automatically taken care of.

Cryptonets [23] homomorphically evaluate a highly tuned
neural network for the MNIST [33] data using the YASHE [5]
scheme. While this neural network is smaller than our LeNet-
5-small, its accuracy is similar to that of our LeNet-5-medium.
The average latency of image inference in their highly opti-
mized implementation is 250 seconds (throughput is higher
because they consider a larger batch size).

Parameter Selection: The encryption parameters N and Q
selected by CHET are shown in Table 4 for HEAAN with
the best data layout (SEAL is omitted due to lack of space).
The values of these parameters grow with the depth of the
circuit. The last columns show the fixed-point scaling pa-
rameters that were used for the image (Pc), plaintext (Pw)
and scalar weights (Pu), and masks (Pm). With these param-
eters, encrypted inference achieved the same accuracy as
unencrypted inference of the same HE-compatible networks.

Data Layout Selection: It is time-consuming to evaluate all
possible data layouts, so we evaluate only the pruned subset
that CHET searches by default. The pruned data layouts
that we evaluate are: (i) HW: each ciphertext has all height
and width elements of a single channel only, (ii) CHW: each
ciphertext can have multiple channels (all height and width
elements of each), (iii) HW-conv and CHW-rest: same has
CHW, but move to HW before each convolution and back
to CHW after each convolution, and (iv) CHW-fc and HW-
before: same as HW, but switch to CHW during the first
fully connected layer and CHW thereafter. Tables 5 and 6
present the average latency of different layouts for SEAL and
HEAAN. The best data layout depends on the network aswell
as the FHE scheme. For example, the time for convolutions
in HEAAN could be more for CHW layout than HW layout
because mulPlain is more time-consuming than mulScalar.
On the other hand, mulPlain and mulScalar take similar time

153

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

1

2

LeNet-5-small

LeNet-5-medium

LeNet-5-large

Industrial

SqueezeNet-CIFAR

Network

Sp
ee

du
p

CHET-SEAL CHET-HEAAN

Figure 7. Speedup (log scale) of rotation keys selection opti-
mization over default power-of-2 rotation keys.

in SEAL. Hence, for the same network, CHW layout might
be the best layout in SEAL but not in HEAAN. It is very
difficult for the user to determine which is the best data
layout and it is tedious to implement each network manually
using a different data layout. For all these networks, CHET
chooses the best performing data layout automatically based
on its cost model of SEAL or HEAAN. Figure 6 plots the
cost estimated by CHET and the observed average latency
for each network and data layout. We observe that they are
highly correlated, so our cost model is quite accurate.

Rotation Keys Selection: Figure 7 presents the speedup of
using only CHET selected rotation keys over using power-of-
2 rotation keys (by default). The geometric mean speedup is
1.8× for all networks and FHE schemes. We observe that the
rotation keys chosen by the compiler are a constant factor
of loд(N) in every case. CHET thus significantly improves
performance without consuming noticeably more memory.

7 Related Work
FHE is currently an active area of research [3–5, 7, 8, 13–
17, 21, 22, 32, 41]. See Acar et al [2] for a survey of FHE
schemes. CHET can be used to homomorphically evaluate
tensor programs using any of these schemes. We demon-
strated the utilities of CHET for themost recent FHE schemes,
CKKS [16] and its RNS variant [15].
Many have observed the need and suitability of FHE for

machine learning tasks [11, 23, 25, 28]. Cryptonets [23] was
the first tool to demonstrate a fully-homomorphic inference
of a CNN by replacing the (FHE incompatible) ReLU activa-
tions with a quadratic function. Our emphasis in this paper
is primarily on automating the manual and error-prone hand
tuning required to ensure that the networks are secure, cor-
rect, and efficient.

Bourse et al. [6] use the TFHE library [17] for CNN infer-
ence. TFHE operates on bits and is thus slow for multi-bit
integer arithmetic. To overcome this difficulty, Bourse et
al. instead use a discrete binary neural network. Similarly,
Cingulata [9, 10] is a compiler for converting C++ programs
into a Boolean circuit, which is then evaluated using a back-
end FHE library. Despite various optimizations [9], these
approaches are unlikely to scale for large CNNs.

Prior works [20, 40] have used partially homomorphic en-
cryption schemes (which support addition or multiplication
of encrypted data but not both) to determine the encryption
schemes to use for different data items so as to execute a
given program. While they are able to use computationally
efficient schemes, such techniques are not applicable for eval-
uating CNNs that require both multiplication and addition
to be done on the same input.
DeepSecure [37] and Chameleon [36] use secure multi-

party computation techniques [24, 42] to perform CNN infer-
ence. Many frameworks like SecureML [35], MiniONN [34],
and Gazelle [29] combine secure two-party computation
protocols [42] with homomorphic encryption. Secure multi-
party computations require the client and the server to col-
laboratively perform computation, involving more communi-
cation and more computation on the client when compared
to FHE. These tradeoffs between FHE and other secure com-
putation techniques are beyond the scope of the paper. Our
focus is instead on optimizing FHE computations. Neverthe-
less, a compiler like CHET could possibly be useful in other
secure computing techniques as well.

8 Conclusions
Recent cryptographic breakthroughs have pushed FHE into
the realm of practical applications. This paper shows that
an optimizing compiler can outperform expert-hand-tuned
implementations by systematically exploring many more
optimization choices than manually feasible. In addition,
CHET makes it easy to port the same input circuits to differ-
ent FHE schemes, a task that will become necessary as new
and improved FHE schemes are discovered. While our focus
in this paper has been on encoding tensor circuits for ho-
momorphic neural-network inference, an application that is
of utmost importance for us, we believe that the techniques
described in this paper can be generalized to other domains
and applications. We also believe that with continued cryp-
tographic innovations, the task of developing practical FHE
applications will become a “systems and compiler” problem,
requiring foundational research from the PL community.

Acknowledgments
We thank the anonymous reviewers and in particular our
shepherd, Martin Hirzel, for their many suggestions in im-
proving this paper.

154

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Dathathri, Saarikivi, Chen, Laine, Lauter, Maleki, Musuvathi, Mytkowicz

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 265–283. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[2] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti.
2017. A Survey on Homomorphic Encryption Schemes: Theory
and Implementation. CoRR abs/1704.03578 (2017). arXiv:1704.03578
http://arxiv.org/abs/1704.03578

[3] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent
Zucca. 2017. A Full RNS Variant of FV Like Somewhat Homomorphic
Encryption Schemes. In Selected Areas in Cryptography – SAC 2016,
Roberto Avanzi and Howard Heys (Eds.). Springer, 423–442. https:
//doi.org/10.1007/978-3-319-69453-5_23

[4] Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang
Zhou. 2017. Optimization of Bootstrapping in Circuits. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM, 2423–2433. http://dl.acm.org/citation.cfm?id=3039686.
3039846

[5] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. 2013.
Improved Security for a Ring-Based Fully Homomorphic Encryption
Scheme. In Cryptography and Coding, Martijn Stam (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 45–64. https://doi.org/10.1007/
978-3-642-45239-0_4

[6] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Pail-
lier. 2018. Fast Homomorphic Evaluation of Deep Discretized Neural
Networks. In Advances in Cryptology – CRYPTO 2018, Hovav Shacham
and Alexandra Boldyreva (Eds.). Springer International Publishing,
Cham, 483–512. https://doi.org/10.1007/978-3-319-96878-0_17

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014.
(Leveled) Fully Homomorphic Encryption Without Bootstrapping.
ACM Transactions on Computation Theory (TOCT) 6, 3 (2014), 13.
https://doi.org/10.1145/2090236.2090262

[8] Z. Brakerski and V. Vaikuntanathan. 2014. Efficient Fully Ho-
momorphic Encryption from (Standard) LWE. SIAM J. Com-
put. 43, 2 (2014), 831–871. https://doi.org/10.1137/120868669
arXiv:https://doi.org/10.1137/120868669

[9] Sergiu Carpov, Pascal Aubry, and Renaud Sirdey. 2018. A Multi-start
Heuristic for Multiplicative DepthMinimization of Boolean Circuits. In
Combinatorial Algorithms, Ljiljana Brankovic, Joe Ryan, and William F.
Smyth (Eds.). Springer International Publishing, 275–286. https://doi.
org/10.1007/978-3-319-78825-8_23

[10] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. 2015. Armadillo: A
Compilation Chain for Privacy Preserving Applications. In Proceedings
of the 3rd International Workshop on Security in Cloud Computing (SCC
’15). ACM, New York, NY, USA, 13–19. https://doi.org/10.1145/2732516.
2732520

[11] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance
Morel, and Emmanuel Prouff. 2017. Privacy-Preserving Classification
on Deep Neural Network. IACR Cryptology ePrint Archive (2017), 35.
https://eprint.iacr.org/2017/035/20170216:192421

[12] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gor-
bunov, Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody,
Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. [n. d.]. Secu-
rity of Homomorphic Encryption. http://homomorphicencryption.org/
white_papers/security_homomorphic_encryption_white_paper.pdf.

[13] Hao Chen. 2017. Optimizing relinearization in circuits for homomor-
phic encryption. CoRR abs/1711.06319 (2017). https://arxiv.org/abs/
1711.06319.

[14] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. 2018. Bootstrapping for Approximate Homomorphic En-
cryption. In Advances in Cryptology – EUROCRYPT 2018, Jesper Buus
Nielsen and Vincent Rijmen (Eds.). Springer International Publishing,
Cham, 360–384. https://doi.org/10.1007/978-3-319-78381-9_14

[15] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. 2018. A Full RNS variant of Approximate Homomorphic
Encryption. In Selected Areas in Cryptography – SAC 2018. Springer.
https://doi.org/10.1007/978-3-030-10970-7_16 LNCS 11349.

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017.
Homomorphic Encryption for Arithmetic of Approximate Numbers.
In Advances in Cryptology – ASIACRYPT 2017 (LNCS 10624), Tsuyoshi
Takagi and Thomas Peyrin (Eds.). Springer, 409–437. https://doi.org/
10.1007/978-3-319-70694-8_15.

[17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. 2018. TFHE: Fast Fully Homomorphic Encryption over
the Torus. Cryptology ePrint Archive, Report 2018/421. https:
//eprint.iacr.org/2018/421.

[18] David Corvoysier. 2017. SqueezeNet for CIFAR-10. https://github.com/
kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze.

[19] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E.
Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2018.
CHET: Compiler and Runtime for Homomorphic Evaluation of Tensor
Programs. CoRR abs/1810.00845 (2018). arXiv:1810.00845 http://arxiv.
org/abs/1810.00845

[20] Yao Dong, Ana Milanova, and Julian Dolby. 2016. JCrypt: Towards
Computation over Encrypted Data. In Proceedings of the 13th Inter-
national Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, Lugano, Switzer-
land, August 29 - September 2, 2016. 8:1–8:12. https://doi.org/10.1145/
2972206.2972209

[21] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully
Homomorphic Encryption. IACR Cryptology ePrint Archive (2012), 144.
https://eprint.iacr.org/2012/144

[22] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lat-
tices. In Proceedings of the Forty-first Annual ACM Symposium on The-
ory of Computing (STOC ’09). ACM, New York, NY, USA, 169–178.
https://doi.org/10.1145/1536414.1536440

[23] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying
Neural Networks to Encrypted Data with High Throughput and Accu-
racy. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. 201–210.
http://jmlr.org/proceedings/papers/v48/gilad-bachrach16.html

[24] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY
Mental Game. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing (STOC ’87). ACM, NewYork, NY, USA, 218–229.
https://doi.org/10.1145/28395.28420

[25] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017.
CryptoDL: Deep Neural Networks over Encrypted Data. CoRR
abs/1711.05189 (2017). arXiv:1711.05189 http://arxiv.org/abs/1711.
05189

[26] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <1MB model size. CoRR
abs/1602.07360 (2016). https://arxiv.org/abs/1602.07360.

[27] Cryptography Lab in Seoul National University. [n. d.]. Homomorphic
Encryption for Arithmetic of Approximate Numbers (HEAAN). https:
//github.com/snucrypto/HEAAN.

[28] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. 2018.
Secure Outsourced Matrix Computation and Application to Neural
Networks. In Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’18). ACM, New York, NY,
USA, 1209–1222. https://doi.org/10.1145/3243734.3243837

155

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://arxiv.org/abs/1704.03578
http://arxiv.org/abs/1704.03578
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
http://dl.acm.org/citation.cfm?id=3039686.3039846
http://dl.acm.org/citation.cfm?id=3039686.3039846
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1137/120868669
http://arxiv.org/abs/https://doi.org/10.1137/120868669
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1145/2732516.2732520
https://doi.org/10.1145/2732516.2732520
https://eprint.iacr.org/2017/035/20170216:192421
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
https://arxiv.org/abs/1711.06319
https://arxiv.org/abs/1711.06319
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://github.com/kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze
https://github.com/kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze
http://arxiv.org/abs/1810.00845
http://arxiv.org/abs/1810.00845
http://arxiv.org/abs/1810.00845
https://doi.org/10.1145/2972206.2972209
https://doi.org/10.1145/2972206.2972209
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
http://jmlr.org/proceedings/papers/v48/gilad-bachrach16.html
https://doi.org/10.1145/28395.28420
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
https://arxiv.org/abs/1602.07360
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN
https://doi.org/10.1145/3243734.3243837

CHET: An Optimizing Compiler for Fully-Homomorphic Neural-Network ... PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[29] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
2018. GAZELLE: A Low Latency Framework for Secure Neural Net-
work Inference. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 1651–1669. https://www.
usenix.org/conference/usenixsecurity18/presentation/juvekar

[30] Alex Krizhevsky. 2009. The CIFAR-10 Dataset. https://www.cs.toronto.
edu/~kriz/cifar.html.

[31] Kim Laine. 2017. Simple Encrypted Arithmetic Library (SEAL) Man-
ual. https://www.microsoft.com/en-us/research/uploads/prod/2017/
11/sealmanual-2-3-1.pdf.

[32] Kristin Lauter. 2017. Postquantum Opportunities: Lattices, Homomor-
phic Encryption, and Supersingular Isogeny Graphs. IEEE Security
Privacy 15, 4 (2017), 22–27. https://doi.org/10.1109/MSP.2017.3151338

[33] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. [n. d.]. The
MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/
mnist/.

[34] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural
Network Predictions via MiniONN Transformations. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17). ACM, New York, NY, USA, 619–631. https://doi.
org/10.1145/3133956.3134056

[35] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for
Scalable Privacy-Preserving Machine Learning. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). 19–38. https://doi.org/10.1109/SP.
2017.12

[36] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. 2018.
Chameleon: A Hybrid Secure Computation Framework for Machine

Learning Applications. In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security (ASIACCS ’18). ACM, New
York, NY, USA, 707–721. https://doi.org/10.1145/3196494.3196522

[37] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar.
2017. DeepSecure: Scalable Provably-Secure Deep Learning. CoRR
abs/1705.08963 (2017). arXiv:1705.08963 http://arxiv.org/abs/1705.
08963

[38] SEAL 2019. Microsoft SEAL 3.1.0. https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

[39] TensorFlow 2016. LeNet-5-like convolutional MNIST model ex-
ample. https://github.com/tensorflow/models/blob/v1.9.0/tutorials/
image/mnist/convolutional.py.

[40] Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd D. Mill-
stein. 2013. MrCrypt: Static Analysis for Secure Cloud Computations.
In Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOP-
SLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013. 271–286. https://doi.org/10.1145/2509136.2509554

[41] Marten vanDijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
2010. Fully Homomorphic Encryption over the Integers. In Ad-
vances in Cryptology – EUROCRYPT 2010, Henri Gilbert (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 24–43. https://doi.org/10.1007/
978-3-642-13190-5_2

[42] AndrewChi-Chih Yao. 1986. How toGenerate and Exchange Secrets. In
Proceedings of the 27th Annual Symposium on Foundations of Computer
Science (SFCS ’86). IEEE Computer Society, Washington, DC, USA,
162–167. https://doi.org/10.1109/SFCS.1986.25

156

https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://doi.org/10.1109/MSP.2017.3151338
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1145/3196494.3196522
http://arxiv.org/abs/1705.08963
http://arxiv.org/abs/1705.08963
http://arxiv.org/abs/1705.08963
https://github.com/Microsoft/SEAL
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://doi.org/10.1145/2509136.2509554
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	2 Background
	2.1 Homomorphic Encryption
	2.2 Integer FHE Schemes with Rescaling
	2.3 Encryption Parameters
	2.4 FHE Vectorization
	2.5 Approximation in CKKS
	2.6 Tensor Programs

	3 Overview of CHET
	3.1 Motivating Example
	3.2 Using the Compiler
	3.3 Design of the Compiler

	4 Intermediate Representations
	4.1 Homomorphic Instruction Set Architecture (HISA)
	4.2 Homomorphic Tensor Circuit (HTC)

	5 Compiling a Tensor Circuit
	5.1 Analysis and Transformation Framework
	5.2 Encryption Parameters Selection
	5.3 Data Layout Selection
	5.4 Rotation Keys Selection
	5.5 Fixed-Point Scaling Factor Selection

	6 Evaluation
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

